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1 Introduction

Since its origin in the 1960s, the gravity equation has been very successful in explain-

ing trade flows between pairs of countries in terms of the countries’ output/expenditures,

bilateral trade costs and other factors. Anderson and Van Wincoop (2003) refine the

theoretical and empirical foundations of the gravity equation, and note the importance

of the multilateral resistance terms.1 These terms capture the general equilibrium effect

of bilateral trade costs and countries’ business cycles on bilateral trade flows.2 A simple

way to control for these multilateral reistance terms with cross-sectional data is to add

importer and exporter fixed effects (i.e. dummy variables), as proposed in Anderson

and Van Wincoop (2003) and Feenstra (2004). If we have panel data on country pairs,

there are many ways in which these fixed effects may be included: time-varying or time-

invariant country dummies, with or without country-pair dummies. With industry-level

or firm-level panel data, the possibilities for interactions between time, country, and

industry/firm allow even more complicated specifications.

A key issue in estimating longitudinal gravity models is that the estimates of impor-

tant parameters seem to vary considerably, depending on which specification of dummy

variables is used. For example, consider the effect of currency union on trade; Rose

and Stanley (2005) use meta-regression analysis to evaluate a list of estimates under

two cases: random and fixed effect models. They find a currency union increase two

member countries’ trade about 47% with a 95% confidence interval ranging from 20%

to 80%. To consider another specific example, there is considerable debate on the sig-

nificance and size of the Eurozone (EZ) effect on trade.3 Baldwin and Taglioni (2007)

1Anderson and Van Wincoop (2003) derive the gravity model in an Armington world, Eaton and
Kortum (2002) obtain a similar model with a Ricardian framework. The model can be extended to
include heterogeneous firms; Chaney (2008), Helpman et al. (2008) and others derive a more generalized
version of the gravity model.

2See Head and Mayer (2013) for more discussions on the modular trade impact and general equi-
librium trade impact with respect to the multilateral resistance terms.

3The trade effects of free trade agreements (FTA) (such as NAFT, GATT, and WTO etc.), have
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show that the EZ effect ranges from 0 to about 40% depending on the specification of

the dummies.4 They provide a thorough summary of the literature, but still leave open

the question of which fixed effect specification to use. Different choices of fixed effects

have distinct theoretical and empirical implications; in this paper, however, we will use

model selection methods that rely on the data alone.5 Another issue that comes up

when estimating the gravity model is the problem of high dimensionality of the parame-

ter space. As the number of countries or years in the sample grows, the number of fixed

effects increases, resulting in a parameter space that becomes extraordinarily large.

For example, later in the paper, we estimate the Eurozone and European Union (EU)

effects on a dataset that has 11,500 observations, but our most unrestricted dummy

specification has 2469 degrees of freedom - clearly, the number of observations is far

too small to invoke the usual asymptotic properties of least squares (LS) estimators.

Consequently, the parameter space of the gravity model becomes extraordinarily large.

This study uses panel data for 22 developed countries during the years 1980-2004

to estimate the trade effects of the EZ and EU, and illustrates how the hierarchical

Bayesian method can help avoid the problems described above and test different models.

We specify ten empirical models implied by different theories, which combine different

groups of dummy variables commonly used in the literature.6 The unrestricted model

also been the subject of debate in Rose (2004), Baier and Bergstrand (2007), Subramanian and Wei
(2007) and Head and Mayer (2013).

4Rose and Van Wincoop (2001) find a 58% increase in trade because of the integration of the EZ
using country fixed effects. Micco et al. (2003) obtain an effect of about 5%-20% based on country-pair
and year dummies.

5This dummy variable selection problem is related to the (subset) variable selection problem in
the statistics literature, which either uses various shrinkage methods or imposes some structure on the
data to reduce dimensionality. Representative papers are Shao (1997), Meinshausen and Buhlmann
(2006),Chen and Chen (2008), Fan and Lv (2008), Zhang and Huang (2008), and Wang (2010), among
many others. Data in genomics and finance are typical examples. Researchers effectively identify key
parameters among thousands of predictors, and frequently face the case that the number of observations
is less than the number of parameters. In the gravity model literature, however, the sample size is
larger than the dimension of regressed coefficients. Meanwhile, trade costs and economic mass variables
are of key interest, and little attention is paid to the dummy variables.

6This paper uses Bayesian method to compare different models and focuses on the model selection.
Bayesian model averaging could be another way to deal with the model uncertainty.
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(denoted as the model “Baseline”), includes time-varying importer and exporter fixed

effects and asymmetric country pair fixed effects. This is the most general specification

and nests all other (restricted) models. The simplest model only controls for nation

fixed effects(denoted as the model “NA”). We use the Bayesian version of the likelihood

ratio test (the BLR test) proposed by Li et al. (2014a) and also information criteria

to compare the ten models. The Bayesian model selection statistics all prefer the

Baseline model, in which countries do not import significantly more from each other

although they use a common currency. This model selection result is consistent with the

empirical model recommended in Baier and Bergstrand (2007), who use country pair

fixed effects and country-and-time effects to control for the endogeneity of FTAs and

the multilateral resistance terms.7 In particular, the result suggests that asymmetric

country pair fixed effects could capture the unobserved heterogeneity among country

pairs, and then supports the inclusion of (unobserved) heterogeneous preferences across

countries into a structural gravity equation, as proposed in Guo (2015).8

We use Monte Carlo simulation to show that standard hypothesis tests (the like-

lihood ratio (LR) test and the Wald test) based on panel LS suffer from a large type

I (false positive) error rate. This is due to the high dimensionality of the parameter

space, and the hundreds of constraints associated with these hypothesis tests. Simple

dimension adjustments to the LR test statistics are insufficient to correct these size

issues, even in the case of homoscedastic errors.9 Simulation results on the Wald test

7Baier and Bergstrand (2007) specify different groups of fixed effects in estimating the effects
of FTAs on trade and propose a panel approach with country-pair fixed effects to control for the
endogeneity of the FTAs. Similarly, Head and Mayer (2013) recommend the country-pair dummies to
account for the endogeneity of EZ. Their recommendation, however, is not theory founded and does
not distinguish the roles of importer and exporter in trade. The specification of our “Baseline” model
is more general. This paper does not propose a solution to the endogeneity problem directly, but does
present a method for selecting dummy variables with econometric techniques.

8Guo (2015) changes the assumption on the homogeneous preferences in Anderson and Van Win-
coop (2003) to heterogeneous preferences across countries, and derives an augmented gravity model
with asymmetric pair dummies and time-varying importer and time-varying exporter fixed effects from
a multi-country dynamic stochastic general equilibrium model.

9With heteroscedastic errors, the type I error of the revised LR test remains large.
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also find that coefficients common to restricted and unrestricted models cannot be dis-

tinctly estimated. Taking these results together, We conclude that panel LS is not a

credible approach for comparing high-dimensional gravity equations.

The Bayesian approach to inference does not rely on large-sample approximations

(see Chamberlain and Imbens (2003)), but provides distributions of all estimates. The

coefficients on the EZ and EU dummies are assumed to follow a normal distribution with

mean 0.2 and variance 0.25, based on the results in Baldwin and Taglioni (2007) and

Head and Mayer (2013);10 other parameters are assumed to have diffuse priors in the

absence of prior information. Here, a hierarchical prior specification breaks down the

data structure into two levels of sub-models, which naturally captures the original multi-

level system.11 Consequently, the key advantages of hierarchical Bayesian estimation

are that it reduces the number of (key) constraints across models, and avoids the small

sample size problem from the LS estimations.

Although the emphasis here is on estimating the currency union or EZ effect in

gravity models, the Bayesian method is more broadly applicable to other topics using

the gravity equation, such as evaluating the effects of different trade policy, such as

FTAs. The Bayesian method can also be used in any situation with a high-dimensional

parameter space, or with multi-level panel data, or with many fixed effects. For ex-

ample, evaluating the return to schooling while controlling for different combinations

of individual-school-county-state fixed effects is another case with a high dimensional

and hierarchical parameter space. This method could also provide an alternative esti-

mation method for confronting possible over-parameterization, as compared to regular

panel LS regressions. Though economists have long known about the small sample size

10Head and Mayer (2013) review 329 published papers estimating the EU effect, and find that the
EU estimate has a mean (and median) of about 0.14-0.23, with a variance of about 0.25. The literature
shows that EZ and EU can increase trade by about 20% on average, and the variance is about 20-30%.
We do robustness checks with different priors; the conclusion on the model section remains.

11See similar arguments in Burda et al. (2008) for a multinomial choice case.
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problem, Bayesian methods have not been commonly used in the trade literature and

other applied microeconomic studies so far.12

The structure of the paper is organized as follows. Section 2 introduces the gravity

equation and ten different specifications for the dummy variables. Section 3 provides

various results from the panel LS regressions depending on the choice of dummies, and

illustrates the magnitudes of the type I error for the LR test and Wald test. Section 4

presents the Bayesian results. The last section concludes.

2 Gravity Equation and Specifications

This section first presents the theoretical gravity model and ten popular empirical

specifications on fixed effects in the gravity equation literature. The subsequent subsec-

tions provide the results on EZ and EU effects on trade using LS, and test hypotheses

on different groups of dummy variables.

2.1 Structural Gravity Model

The structural gravity equation in Anderson and Van Wincoop (2003) augmented

with heterogeneous bilateral preferences in consumption baskets for each importer i

and exporter k can be shown to yield,

12To my knowledge, Ranjan and Tobias (2007) is the only exception using Bayesian method to
estimate gravity equations in the trade literature besides Guo (2015). They apply the Bayesian ap-
proach to properly handle zero-values in trade between countries and a non-linear relationship between
contract enforcements and trade. Instead, Silva and Tenreyro (2006) propose to use the Poisson pseudo-
maximum-likelihood (PPML) to control for the heteroskedasticity resulted from the massive zero trade
values. Here our data have very few zeros observations in bilateral imports. For applied microeconomic
empirical studies, Chamberlain and Imbens (2003) propose a nonparametric Bayesian approach for two
cases with high-dimensional parameter spaces: educational choice and quantile regression, due to the
parameter uncertainty (the first case) and the violation of the traditional asymptotical distribution
assumption (the later one).
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where Qk
t is price level for a good k produced in country k.

The gravity equation above specifies that the bilateral imports IM ik
t (country i

imports good k from country k) are positively influenced by world output “WOUTt”,

importers’ expenditure shares of world output “EXP i
t /WOUTt”, exporters’ output

shares of world output “OUT kt /WOUTt”, and importer’s preference on good k “αik”,

but are impeded by trade costs “τ ikt ”. To estimate this gravity model, the specifica-

tions of dummy variables/fixed effects to control for the two “multilateral (gravita-

tional inconstant) trade resistance terms” (MLRik
t , a weighted average trade costs),

i.e. MLRik
t = (P i

tΠ
k
t )
η−1 is debatable in the literature.

The main difference between our structural gravity model and traditional gravity

model is the share αik13. These preferences weights can be explained as the bilateral

13In section 2.3, Head and Mayer (2013) derive a series of similar structural gravity equations from
various demand-side and/or supply-side theories without the heterogeneous bilateral preferences αik.
In the demand-side theories, Anderson and Yotov (2010) use βk

i to differentiate the products by place of
origin i and sector/class k in the utility function. The parameter βk

i is regarded as a share or quality
parameter, and specific to an importer (and a good) but common to all her trade partners, which
corresponds to assume αik = αi (k in this paper is defined as an importer). The βs are either canceled
out in the structural gravity equation or absorbed in the country fixed effects in the estimation. In
the supply-side theories, they also mention βs reflect the absolute advantages in productivity draw
distributions across sectors. Here, following Guo (2015), the heterogeneous bilateral preferences αik

are different from theirs. See section 3 of Guo (2015) for details.
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preference shock in the gravity equation with heterogenous consumers discussed in Head

and Mayer (2013). They also can be interpreted as the bilateral fixed trade costs in the

model with heterogenous firms as in Chaney (2008). Indeed, they capture all unobserv-

able heterogeneity in country pairs (such as asymmetric country-pair preferences and

trade barriers in the data), regarded as a generalization of “Canadian-U.S. asymmetric

border effects” in Bergstrand et al. (2013)14.

Because of potential endogenous economic mass variables and the non-stationarity

issue, we use the import ratio imik
t instead the import level as the dependent variable.

Since memberships in the European Union (EU) entailed economic reforms that could

be expected to raise bilateral trade themselves, Baldwin and Taglioni (2007) evaluate

the effect of European Monetary Union (Eurozone) separately from EU policies. Fol-

lowing Baldwin and Taglioni (2007), we include variables on EZ and EU in the gravity

model as well as other standard set of controls representing trade costs and fixed effects.

Our most general model, the “Baseline”, is shown below after we take logs on equation

(1),

wikt = cons+ βEZEZ + βEUEU + δik + θit + φkt +
J∑
j=1

γjtg
ik
j + εikt . (4)

The dependent variable, bilateral import ratio, is defined as wikt = log(imik
t ),15 and the

asymmetric country pair dummies δik are used to capture the preferences αik. Both

time-varying importer and exporter dummies are used to control for the MLRik
t , i.e.

log(MLRik
t ) = θit + φkt .

The form of bilateral trade costs is assumed as follows,

14Bergstrand et al. (2013) provide strong evidence for the ”asymmetric border effects”, which means
the direct trade-impeding effect of the Canadian-U.S. border is much larger for Canadian imports from
the U.S. relative to the U.S. imports from Canada.

15See appendix A for another two versions of estimation equations commonly used in the literature.
This paper focuses on the results for bilateral import ratios to avoid a possible endogeneity problem
on the economic mass variables.
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(
τ ikt
)1−η ≡

J∏
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(
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Taking logs of both sides of the equation obtains the log of trade costs,
J∑
j=1

γjtg
ik
tj , where

variables giktj (≡ log
(
Gik
tj

)
), include logs of bilateral distances (log(dist.)) and four dum-

mies for border (contig.), common official language (comlang.), Eurozone membership

(EZ), and European Union membership (EU). The variable “EZ” is equal to 1 if both

countries use Euro in trade; and the variable “EU” is equal to 1 if the two countries

belong to the European Union.

2.2 Constraints and Implications

Table 1 lists another nine variations of equation (4) based on different assumptions

on MLRik
t in the literature, which are all nested in the “Baseline” model.16 These

restricted models arise from combinations of three key restrictions with respect to the

dummy variables, which have different theoretical implications on the estimated Euro

effect and European Union effect on trade.

The first restriction is on country pair dummies, excluding these asymmetric pair

dummies (δik = 0) or imposing symmetric restrictions on pair dummies (δik = δki)

in the regression. The asymmetric county pair dummies are constant over time, and

variables on EU and EZ are time-varying since countries become members in different

years. Including these pair dummies help absorb the effects of all constant bilateral

relationships between members on trade flows so that variables on EU and EZ can

precisely capture how bilateral trade of a specific country-pair changes over time due to

16The trade cost variables are redundant because of the multi-collearity with the asymmetric country
pair dummies; time-varying importer and exporter dummies also drop one for each country due to the
same reason. In this paper with 22-country and 25-year panel data, the Baseline model drops total
72 dummies, including 3 trade costs variables, 25 time-varying importer dummies for USA (θUSA

t ), 1
time-varying exporter dummy in 2004 for USA, and another 43 asymmetric country pair dummies.
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the adoption of a customs union and common currency. The estimated Euro effect is a

within effect and symmetric/asymmetric if we use symmetric/asymmetric country-pair

fixed effects. Without the pair dummies, the estimation may suffer from the omitted

variable problem or endogeniety issue (Baier and Bergstrand (2007)) since these pair

dummies capture all unobserved bilateral trade relations and correlated with EZ and EU

variables. An exception is that these unobserved bilateral relations are homogeneous

across country-pairs. Anderson and Van Wincoop (2003) and the followers assume

homogeneous preferences and unobserved trade costs in their model and do not control

for the asymmetric pair dummies.

The second one focuses on the multilateral resistance terms. Due to the elimi-

nation of currency differences among countries, a substantial diversion of trade away

from the rest of the world would occur theoretically, and then the multilateral re-

sistance/remoteness terms change over time accordingly. Therefore, the time-varying

not constant multilateral resistance terms should be included in the estimations based

on Anderson and Van Wincoop (2003); the estimated Euro effect is more close to a

between effect (a cross-sectional comparison). Frankel (2010), however, argues that

such large trade diversion from currency unions is not robust in the data and then the

multilateral resistance terms and price index are relative constant over years due to

constant trade costs and expenditure shares in Equations (2) and (3). We can impose

and test the constraint on the multilateral resistance terms by data, which takes the

forms log(MLRik
t ) = θi + φk or log(MLRik

t ) = µt + θi + φk.17 We also can assume that

the multilateral resistance is country-pair specific but constant, the constraint will have

log(MLRik
t ) = µt + ζ̃ ik so that estimated country pair dummies ζ ik is the sum of two

parts, i.e. ζ ik = δik + ζ̃ ik.

The third constraint ignores the different roles for importers and exporters, and

17Note that country fixed effects, such as θi and φk, are collinear with the country-pair dummies.

10



contains nation dummies only, such as log(MLRik
t ) = θi + θk or log(MLRik

t ) = θit + θkt

(θk = φk or θkt = φkt ). This constraint assumes that trade costs are symmetric for im-

porters and exporters and that countries all have a balanced trade or very small shares

of trade balance over GDP every period. The symmetric trade costs assumption is in-

consistent to Waugh (2010), who finds that poor countries face higher export costs than

rich counties and this asymmetric trade costs are quantitatively important to explain

the large international income differences. The small trade balance assumption implies

that international borrowing and lending markets are not important for countries to

smooth consumptions.

3 Eurozone Effect or European Union Effect?

3.1 Standard Panel Regressions on EZ and EU Effects

We collect the annual data for 22 OECD countries during 1980-2004 following Bald-

win and Taglioni (2007)(appendix A) to estimate the two effects on trade. Countries

participated the EU and EZ in different years. There are 14 countries in EU by year

1995 and 8 non-EU countries. Among the EU group, 4 countries, Denmark, Greece,

Sweden, and United Kingdom did not use euro by year 1999. The EU and EZ effects

on trade can be distinguished by the variations of memberships across countries and

years. All models are given in table 1 and the Baseline model includes time-varying

importer and exporter fixed effects, and asymmetric country-pair dummies.18.

Table 2 shows the results from the panel LS estimations. Using euros in trade

increases the bilateral import ratio 18% on average, and the effect varies from -0.4%

(insignificant) to 51.1% (significant).19 Compared to the EZ effect, the EU effect on

18Note that Baldwin and Taglioni (2007) use the import level as the dependent variable, and their
results are replicated and available upon request.

19The number 51.1% is equal to e(0.413) − 1. Other percentages below are also calculated similarly.
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import is more stable and varies from 16.3% to 25.5%. In the Baseline model, the EZ

policy does not affect trade significantly while the EU membership has a significant

and positive effect on imports, 25.5% more.20 So do models, columns of “YIMYEX-

Pair” and “YNAPair”, with symmetric pair dummies. Estimations with time-varying

country fixed effects only (columns of “YIMYEX” and “YNA”), however, show that

the significant effect of the EZ on increasing import ratios is 51.1%, compared to non-

EZ members. Estimations with time-invariant country fixed effects only (columns of

“NA”, “NAYear”, “IMEX” and “IMEXYear”) show that both the EZ and EU have

large effects in promoting imports, 34-35% and 16-18% respectively. To sum up, these

results illustrate that the EZ and EU effects vary significantly with the choice of dummy

variables though the standard errors of the coefficients on the EZ and EU variables are

similar across different specifications.21

From the above discussions, we conclude: 1) the choice of time-varying or constant

country fixed effects does matter significantly for the estimations of the EZ and EU

effects on import ratios; 2) models with either symmetric or asymmetric country pair

dummies reach similar results; 3) similar estimates are produced whether the model

isolates the role of importing/exporting country or not.

3.2 Hypothesis Tests and Large Type I Error

Based on the estimates in Table 2, we use four hypothesis tests to distinguish the ten

models, and their statistics are given in table 3. Results from the classical LR test (the

dimension adjusted LR test suggested by Italianer (1985)) are listed in the LR1 (LR2)

column.22 The LR test and F test assume i.i.d. error terms. The “Wald NW” column

20Results with import levels yield qualitatively similar conclusions with those with import ratios.
21The results from MLE shown in the appendix remain similar to the LS estimations.
22Italianer (1985) finds that the LR test statistic is chi-squared distributed with the correction factor

m/N , where N is the number of observations and m is equal to (N − r − 0.5 ∗ dn) with the number
of restrictions r and the dimension dn of the restricted model (the null hypothesis). See appendix B.1
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takes heteroskedasticity into account, and provides Wald statistics using Newey-West

standard errors with 2 lags, which are robust to heteroskedasticity and autocorrelation

(HAC) (Newey and West (1987, 1994)).23 All four tests reject the null hypothesis in

the first nine combinations of the null and alternative models. That is, the “Baseline”

model cannot be rejected. In other words, based on the LS results, this data sample

supports the model with asymmetric country-pair and time-varying importer/exporter

fixed effects, where the EZ has no effect on the import ratios but the EU increases the

import ratio by 25.5%. This conclusion, however, is not credible since these tests suffer

from large size distortions (the type I error, the rate of rejecting the null when the null

is true). The following discussions provides the limitations of the LS estimations and

the size distortions of these tests.

The preceding regressions include a large number of dummy variables, especially for

the Baseline model, and the hypothesis tests have hundreds of constraints (the number

of different parameters in the null and alternative models, the degree of freedom (DF)

for the test, the column of “DF” in table 3). Though the hypothesis tests all support

the Baseline model, statistical inference may suffer from a small sample size problem

due to the unusually high dimensionality of the parameter space and the extremely

large group of constraints associated with the hypothesis tests. Evans and Savin (1982)

and Italianer (1985) show that the finite sample distribution of the statistic is biased

towards the conventional large sample asymptotic chi-square distribution. Then the

statistics (or the critical values for the 5% significant level) need to be adjusted.

Monte Carlo simulations with i.i.d errors show a large size distortion for the classical

LR test (the LR1 column with spherical errors) in Table 4,24 more than 50% on average.

Using the same consistent but biased estimated variance as in LR1 column, the Wald

and table 4 for calculations on LR2.
23The conclusion remains up to 5-lags.
24See appendix B.1 for simulation details for columns of LR1, LR2, Wald1, Wald2 and F. Consid-

ering the HAC, the size distortions are even larger.
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test (the Wald1 column) has an even larger size distortion, 77% on average. In contrast,

the F test and the second Wald test (the Wald2 column) with dimension adjusted

consistent and unbiased estimated variance have normal sizes. For example, in the first

combination (1) (Comb.(1): “NA” vs “Baseline”), the sizes for the LR1, Wald1 and

Wald2 test are 61.5%, 93.7% and 6.7% respectively. In other words, we reject the true

null model with time-invariant nation dummies slightly more often (1.7% more than

5%) using the Wald2 test, but too often for the LR1 and Wald1 tests. Supplementary

rejection rates of the null model is provided in figure 1, which presents the power curves

of these tests.25 The dimension adjusted LR kernel density (LR2) based on Italianer

(1985) performs better than the LR1 test but its type I error remains high (more than

10%) for the Comb.(7) and (8), which test the significance of country-pair dummies.

These large size occurs because the distributions of the tests with small finite samples

differ from the asymptotic ones.26

3.3 How Different Are These Ten Specifications?

Do different models estimate consistent coefficients though only one model has the

true data generating process? We do MC simulations to estimate the coefficients com-

mon to the null and alternative models given the true coefficients are from the null

model. Table 5 presents the type I error of the Wald test27 on the estimated common

coefficients from the null (restricted) and the alternative (unrestricted) models against

the true coefficients with homoscedastic error terms. The null hypothesis in Table 5 is

25See appendix B.1 for the details. For the Comb. (1) (“NA” vs “Baseline”), the null hypotheses
H0 have 1469 constraints, including δik = 0 and ∆ = φkt − θk = θkt − θk = 0. We assume that δ and ∆
follow normal distributions with a zero mean and a common variance σ2

∆ and obtain the power curves
by increasing the σ2

∆ from zero to 0.05.
26See appendix B.1 for more discussions.
27From here on, we use the Wald2 statistics as the Wald test with a small and normal size. Table

5 provides the results with homoscedasticity. In the appendix, tables B.2-B.5 also provide the results
with misspecified heteroscedasticity.
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H0 : B̂m = B0 for m ∈ {a, n}, where the true coefficients B0 are initially estimated

from the null model and included in both the null and alternative models. The Wald

statistic is calculated by the following formula,

Wald = (B̂m −B0) ∗
[

̂var(Bm)
]−1

∗ (B̂m −B0). (6)

where ̂var(Bm) = σ̂2
m ∗ (X ′mXm)−1, σ̂2

m = RSSm/(N −Km), and m ∈ {a, n}. Then the

rejection rate (size) of the test is the frequency of rejection over 1000 simulations. The

rejection rates for both the null and alternative models with homoscedasticity are all

close to 5% in the large column “All coefficients in the Null Model”. In particular, the

second large column focuses on the EZ and EU effects, which gives a similar conclusion

on the sizes, around 5%. That is, both the null and alternative models can estimate

consistent Euro and EU effects though only the null model is true.

In addition, Table 6 provides the rejection rates (powers) of the Wald test on the

βEZ and βEU in the null model when the true data generating process deviates from

the null model.28 For example, in the Comb. (1), we impose the restrictions δik = 0,

∆ = φkt −θk = θkt −θk = 0 on the model “Baseline” to get the model “NA”. We assume

that δ and ∆ follow normal distributions with a zero mean and a common variance σ2
∆.

When the variance σ2
∆ increases to 0.05, we should reject the null model more often.

Surprisingly, the rejection rate of the coefficients on the EZ and EU effects estimated

from the null “NA” remains low, 4.7% though the the model “NA” is wrong. In other

words, the low dimensional models (time-invariant fixed effects) are sufficient to provide

consistent estimators for EZ and EU effects if the variances of the time-varying importer

and exporter fixed effects are small. In other cases except the Comb. (7), the rejection

rates all remain low, around 5%, though the null model is wrong. These results show

28See the details in appendix B.1.
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that the Wald test has a low power on the type II error.

4 Bayesian Method

Previous results from the hypothesis tests support the Baseline model with asym-

metric country pair and time-varying importer and exporter fixed effects for this specific

data sample. These tests rely on the asymptotical probability theory. Due to limited

sample size, the large dimension of the parameter space can influence the asymptotical

distributions of the estimates and leads to a large type I error. Bayesian framework

allows to cope with hierarchical/multilevel models without encountering the problems

of “overfitting”(Gelman et al. (2004)). The Bayesian method can estimate the dis-

tributions of all parameters, including the distributions of coefficients on EU and EZ

and the distributions of the variance across years. The latter provides direct visual

evidence on the volatility of these time-varying dummies. The hierarchical structure

matches the multi-leveled data and has the advantage of reducing the dimension of the

key parameter space and number of constraints to test different models, which avoids

the large dimensionality problem in LS and MLE.29 Section 4.1 provides the hierarchi-

cal Bayesian model and its estimation methodology.30 The next subsection shows the

Bayesian results on the model selection.

29Theoretically, feasible general least squares (FGLS) on these models can be used to obtain the
likelihood and then to do hypothesis tests. But the unknown variance matrix (13255x13255) makes
FGLS impractical unless we assume an analytical formula for the inverse of the variance matrix.
Hausman and Kuersteiner (2008) find that FGLS is biased when error terms with homoscedasticity
across groups but unconstrained covariance matrix within a group.

30This paper tries to do model selection and comparison by Bayesian method instead of Bayesian
model averaging.
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4.1 Estimation Models and Priors

The general two-level hierarchical linear Bayesian model with normal prior distri-

butions for regression coefficients and Gamma/Wishart prior distributions for variance

coefficients is given as follows (Gelman et al. (2004), Gelman (2006), and Koop et al.

(2007)),

Y = X ∗B1 + ε (7)

Y = XB1 + ε, E(Y) = Y

where Y| B1,Σ1 ∼ N(X ∗B1,Σ1)

B1| B2,Σ2 ∼ N(W ∗B2,Σ2)

B2| B3,Σ3 ∼ N(Z ∗B3,Σ3)

Σ−1
1,2,3| B1,2,3 ∼ Gamma/Wishart,

where the B2 is the key/hyper parameter vector. This Normal-Wishart prior distri-

bution gives analytical posterior (conditional) distributions for all parameters and has

an advantage for estimation. In this paper, the hierarchical structure of the Baseline

model can be specified as follows,

wikt = cons+ βEZEZ + βEUEU + δik + θit + φkt + εikt (8)

wikt |Θ ∼ N
(
wikt ,

(
σik
)2
)

where wikt = cons+ βEZEZ + βEUEU + δik + θit + φkt

1

(σik)2 ∼ G(a1, a2),

where the error term has a simple heteroskedastic form without serial correlations. The

choice on this type of error term mainly relies on the fact that heterogeneity of cross-
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sectional country pair significantly affects the estimation of the EZ and EU effects based

on the previous section 3.31

The specific values and prior distributions for the parameters are listed below,32

cons ∼ N (0, 1000), βEZ ∼ N (0.2, 0.25), and βEU ∼ N (0.2, 0.25);

δik ∼ N
(
p, σ2

p

)
with mean p ∼ N (0, 1000) and variance 1

σ2
p
∼ G(a1, a2);

θit ∼ N (θi, σ2
θt) with mean θi ∼ N (0, 1000) and variance 1

σ2
θt
∼ G(a1, a2);

φkt ∼ N
(
φk, σ2

φt

)
with mean φk ∼ N (0, 1000) and variance 1

σ2
φt
∼ G(a1, a2);

where the shape a1 = 0.001 and the rate a2 = 1000. βEZ and βEU use the informative

priors based on Baldwin and Taglioni (2007) and Head and Mayer (2013) while priors

of other parameters are assumed to be noninformative.33 The time-invariant country

pair fixed effects δik are assumed to have a common mean p and variance σ2
p to capture

the common features of these 22 OECD countries. The time-varying importer and

exporter fixed effects, the multilateral resistance terms, θit and φit are expected to have

heterogeneous means θi and φi across countries and variances σ2
θt and σ2

φt across years.

They are used to control for the business cycle properties and shocks for each country

in each year. Volatile and/or large posterior distributions of σ2
θt and σ2

φt across years, as

well as volatile posterior distributions of θi and φi, provide direct evidence to support

the models with time-varying country fixed effects. Depending on the specifications of

31With a heteroskedastic and serially correlated variance and covariance structure, the time-varying
component of the data would be absorbed in the error εikt instead of the country fixed effects θit and
φkt ; consequently, the model with time-invariant fixed effect is more easily preferred.

32This hierarchical linear model is a special case of mixed linear models in Cameron and Trivedi
(2005) with randomly varying intercepts (p774). Here the priors for the parameters B1 (and B2) are
assumed to be independent; their posteriors are correlated.

33We also try other priors on βEZ and βEU . First, we use the diffuse priors on the two parameters.
With diffuse priors, Bayesian results show that the Baseline model is still preferred and that the
magnitude of the EZ effect is similar. We also try priors of the hyperparameters that are similar to
Ranjan and Tobias (2007), who uses the hierarchical Bayesian method to estimate a non-parametric
threshold Tobit gravity model because of too many zeros in the trade data. The conclusions on model
selection and the EZ effect remain; the import data in this paper has no zeros.
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these dummies, models and priors vary. For example, the model “IMEX” with time-

invariant fixed effects imposes the constraints: θit = θi, φit = φi, δik = 0, σ2
θt = 0 and

σ2
φt = 0 on the Baseline model, assumes θi ∼ N (0, 1000) and φi ∼ N (0, 1000), and

includes the diffuse priors of the coefficients γj on the three trade costs variables.

The estimation algorithm is the Markov Chain Monte Carlo Simulation via Gibbs

Sampler.34 Two convergence tests are used here to determine the burning and draw

times: 1) Gelman-Rubin statistic (BGR) with |R − 1| < 0.05 for single parame-

ter and multiple parameters (Gelman (2006));35 2) Geweke chi-squared test (Geweke

(1992)).36 Most of the parameters in the small models like “NA”, “NAYear”, “IMEX”,

“IMEXYear” and “PairYear” converge after 5000 burn-in times based on the two tests.

The large models, however, have more than one thousand parameters and converge

slowly. After 100,000 burn-in times, parameters in all models have converged based on

BGR statistics for 50000 draws (thin 10) from either single chain or multiple chains.

The second level (key) parameters (β2) in large models converged based on Geweke

Chi-squared statistics.

4.2 Bayesian Results

Table 7 shows the estimated coefficients and standard deviations on variables EZ and

EU for the ten models using the Bayesian method. The average EZ effect in increasing

import ratios is 15%. The EZ effects are significantly positive in seven models: “NA”,

“NAYear”, “IMEX”, “IMEXYear”, “YIMYEX” and “PairYear”; their magnitudes are a

little smaller than those using the LS in Table 2. In another three models: “Baseline”,

“YIMYEXPair”, and “YNAPair”, using euros has no significant effect on trade. In

34See appendix B.5 for the five estimation steps.
35Matlab code reference: the GNU General Public License.
36Matlab code reference: James P. LeSage, Dept of Economics Texas State University-San Marcos,

jlesage@spatial-econometrics.com.
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contrast, an EU membership is consistently estimated to have a significantly positive

effect on import ratio, 17% more on average. The variation of EZ and EU effects due

to the different choices on dummy variables remain as the LS and MLE estimations.

Since Bayes factor/odds ratio suffers from Jeffreys’ concern and Jeffreys’-Lindleys’

paradox,37 we use the Bayesian approach for the LR test (BLR test) proposed by Li

et al. (2014a) to compare models. When the likelihood function is available in closed-

form and equations are estimated by MCMC, this BLR test statistic is defined by the

difference of the posterior means of the log-likelihood values for the null and alternative

models,

T = ̂LL (y | Θa)− ̂LL (y | Θn) (9)

where the LL (y | Θm) (m ∈ {u, r}) is the log-likelihood value (the unrestricted or

restricted model respectively). The symbol “-” refers to the mean value. This BLR

statistic asymptotically follows χ2(p)− p, where p is the number of constraints.

We also use three information criteria: Akaike Information Criterion(AIC), Bayesian

Information Criterion (BIC), and Deviance Information Criterion (DIC) to select mod-

els. The three criteria are developed based on the posterior log-likelihood with a penalty

on the number of dimensions. DIC is initially developed by Spiegelhalter et al. (2002);

and Celeux et al. (n.d.) provides eight different versions of DICs for latent variable

models. The key interest of the ten competing models is how to specify the (latent)

dummy variables; so we treat all dummy variables in the model as parameters. Then

37See Gelman et al. (2004) (page 185-186) and Li et al. (2014a) for extensive discussions.
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we use the conditional DIC7 in Celeux et al. (n.d.), which is calculated as below,38

DIC7 = D̂ (y,Θ) + pD

where pD = D̂ (y,Θ)−D
(
y, Θ̂

)
,

D̂ (y,Θ) = −2 ∗ ̂LL (y | Θ) and D
(
y, Θ̂

)
= −2 ∗ LL

(
y | Θ̂

)
.

The D (y,Θ) is the Bayesian deviance, a goodness of fit (a measure of surprise or

uncertainty). The posterior mean deviance D̂ (y,Θ) is equal to -2 times the mean of

posterior log-likelihood ̂LL (y | Θ), and the deviance D
(
y, Θ̂

)
uses the log-likelihood

calculated by the mean of posterior parameters Θ̂. The pD, represents the effective

dimension proposed by Spiegelhalter et al. (2002), a penalty with a larger number of

parameters. The smaller number of DIC implies a better fit of the model. Another two

commonly used criteria are AIC and BIC (Congdon (2005) and Iliopoulos et al. (2007))

shown as below,

AIC = D
(
y, Θ̂

)
+ 2 ∗ d

BIC = D
(
y, Θ̂

)
+ d ∗ log (N)

where d is the (effective) number of estimated parameters and N is the number of

observations. Smaller values in AIC and BIC indicate better fit of the model.

Table 7 presents the Bayesian statistics of the ten models. The BLR column shows

the statistics of the BLR test, and the alternative model is the Baseline model. These

test statistics are all larger than the critical values associated with dimension at 1% sig-

nificant level, and reject the null model. Hence, the “Baseline” model with asymmetric

38Though Celeux et al. (n.d.) recommend DIC3 and DIC4, Li et al. (2014b) find that only three
versions of DICs: DIC1, DIC2 and DIC7, are coherent. Although Li et al. (2014b) also find DIC7 has
a few theoretical problems, it is computationally convenient to use DIC7, as explained in Spiegelhalter
et al. (2002).
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country-pair fixed effects as well as time-variant import and exporter fixed effects, is

supported by the BLR test. Additionally, all three criteria give the lowest values for

the Baseline model. These Bayesian statistics all favor the Baseline model to other nine

restricted models. In the Baseline model, the posterior mean of the EZ effect on trade

is negative but insignificant, whereas the posterior mean of the EU effect is positive

and significant. In other words, two countries using the Euro does not increase imports

with each other; but membership in the European Union does help increase imports by

14.8% within the union.39

We expect a positively significant effect of EU on trade since the EU is a unique

economics and political union. The initial organization, European Economic Commu-

nity, was created in 1958 among six initiated countries: Belgium, Germany, France,

Italy, Luxembourg and the Netherlands. Then, 22 other members joined and a huge

single market has been created and continue to grow. The estimated positive EU effect

is 14.8%, close to the mean of EU estimates (17.35%) in Head and Mayer (2013).

The insignificant EZ effect may come from three reasons. Since EU membership

has enhanced trade a great deal together among the EU countries, the EZ effect on

promoting more trade could be limited. Second, most factors that form the EU also

plausibly cause the formation of European Monetary Union, such as countries’ GDPs,

historical relationships, relative factor endowments and geographic distances.40 We

observe a positive correlation between the EU and EZ variables. The average correlation

over the whole sample is 0.384, but varies considerably across country-pairs (from zero

to 0.688). We also find that variable EU varies much more than variable EZ across time

and country pairs. The overall standard deviation of EU dummy (0.449) is twice of

that of EZ dummy (0.225).41 Thus, Due to the positive correlation of the two policies

39The posterior means and variances of other hyper parameters are shown in the Table B.6.
40See Baier and Bergstrand (2004) and Baier and Bergstrand (2007) for more discussions on the

economic determinants of FTAs.
41The between standard deviation of the EU dummy (0.385) is about 4 times of that of the EZ
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and the smaller variation of the EZ, the effect of EZ could be partly captured by the

EU effect. Furthermore, agents in our 22 OECD countries can access international

financial markets freely. We expect very low transaction costs of converting currency

across these countries so that using a common currency “Euro” reduces very small

barriers technically and has no significant effect on trade flows. Baldwin and Taglioni

(2007) also find negative but insignificant effect of Eurozone on trade once they control

for the country pair and nation-year fixed effects.

The supportive evidence for the Baseline model can also be found in Figure 2, which

depicts fairly volatile posterior 95% credible intervals of the variances of time-varying

fixed effects. The posterior means of the two variances σ2
θt and σ2

φt show a U-shaped

trend; the yearly world shocks decrease from year 1980, reach the trough in the mid

1990s, and increase from the late 1990s.

The Baseline model is derived by augmenting the theory of Anderson and Van Win-

coop (2003) with heterogeneous shares on products in the consumption bundle. The

importer-year and exporter-year fixed effects capture the “multilateral resistance terms”,

the essential requirement of the theoretical gravity equation in Anderson and Van Win-

coop (2003). The country pair fixed effects further help econometrically resolve the

endogeneity of the EU and EZ policies addressed in Baier and Bergstrand (2007).

Therefore, the model selection result identifies the necessity of both groups of fixed

effects in the gravity equation although most empirical studies in gravity equation

commonly considers either of them only.

dummy (0.097). The within standard deviations of the two dummies are close, 0.232 on variable EU
and 0.203 on variable EZ.
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5 Conclusion

This paper studies how different specifications of the bilateral trade relations and

the multilateral resistance terms in the gravity equation influence the estimated effect

of trade policies such as EZ and EU. We have considered ten commonly used gravity

models, and have shown that the choice of dummy variables affects the magnitude of the

estimated currency union effect on bilateral imports. Three groups of dummies, which

are included in the gravity equations to control for individual country and country-pair

fixed effects, are compared: asymmetric vs. symmetric country-pair dummies, time-

varying vs. time-invariant country dummies, and separate importer/exporter vs. nation

dummies. Depending on the choice of dummies, EZ and EU effects on trade during

the period 1980-2004 vary greatly using the LS and MLE methods, from -0.4% to 51%.

Based on the LS results, the conventional Wald test, LR test and F test are used to

assess the necessity of the different dummies, but these tests have large size distortions.

Two factors contribute to this large size distortion. First, the high dimensionality of the

parameter space leads to biased asymptotical chi-square distributions for the LR test

and Wald tests. Second, the large number (hundreds) of constraints associated with

the hypothesis tests drive the size distortion’s sensitivity to the dimension adjustment

method on the test statistics.

Panel LS estimation results and Monte Carlo simulations on size distortions more or

less show that symmetric and asymmetric pair fixed effects obtain similar EZ and EU

effects, and that separating the role of importer and exporter in the estimations also does

not significantly change the coefficients compared to the model with symmetric nation

dummies. The choice of time-varying vs. time-invariant country dummies, however,

affects the estimations considerably. In another words, the choice of time-varying vs.

constant country dummies is the least clear-cut.

Then we provide alternative econometric method: Bayesian method to re-estimate
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all ten models and do model selection using Bayesian statistics. The Bayesian method

provides the distributions of all parameters and allows investigation of the variances of

those time-varying country fixed effects. The Bayesian likelihood ratio test and three

information criteria clearly show that the unrestricted Baseline model with asymmetric

pair fixed effects, time-varying importer and exporter fixed effects, is favored among

all ten models. The EZ effect on trade disappears but the EU effect on Trade remains

significant and positive, 14.8%. The volatile posterior distributions of the variance

parameters in the Baseline model provide evidence to support the time-varying importer

and exporter effects. This model selection result identifies the necessity of the country

pair effects and importer-time and exporter-time fixed effects in the gravity equation.
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Table 1: List of equations: bilateral import ratios
Models Equations

Baseline wik
t = cons+ βEZEZ + βEUEU + δik + θit + φkt +

3∑
j=1

γjg
ik
j + εikt

NA wik
t = cons+ βEZEZ + βEUEU + θi + θk +

3∑
j=1

γjg
ik
j + εikt

NAYear wik
t = cons+ βEZEZ + βEUEU + µt + θi + θk +

3∑
j=1

γjg
ik
j + εikt

YNA wik
t = cons+ βEZEZ + βEUEU + θit + θkt +

3∑
j=1

γjg
ik
j + εikt

YNAPair wik
t = cons+ βEZEZ + βEUEU + ζik + θit + θkt +

3∑
j=1

γjg
ik
j + εikt

IMEX wik
t = cons+ βEZEZ + βEUEU + θi + φk +

3∑
j=1

γjg
ik
j + εikt

IMEXYear wik
t = cons+ βEZEZ + βEUEU + µt + θi + φk +

3∑
j=1

γjg
ik
j + εikt

YIMYEX wik
t = cons+ βEZEZ + βEUEU + θit + φkt +

3∑
j=1

γjg
ik
j + εikt

YIMYEXPair wik
t = cons+ βEZEZ + βEUEU + ζik + θit + φkt +

3∑
j=1

γjg
ik
j + εikt

PairYear wik
t = cons+ βEZEZ + βEUEU + ζik + µt +

3∑
j=1

γjg
ik
j + εikt
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Table 2: Eurozone effect and European Union effect on the log bilateral import ratio by LS: 1980-2004
Var. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Dummies Baseline NA NAYear YNA YNAPair IMEX IMEXYear YIMYEX YIMYEXPair PairYear
Time-varying Yes No No Yes Yes No No Yes Yes No
Imp. & Exp. Yes No No No No Yes Yes Yes Yes No
Nation No Yes Yes Yes Yes No No No No No
Year No No No Yes No No Yes No No Yes
Pair Asym. No No No Sym. No No No sym. Sym.
EZ -0.004 0.290*** 0.302*** 0.413*** -0.004 0.290*** 0.302*** 0.413*** -0.004 0.139***

0.055 0.052 0.057 0.110 0.053 0.052 0.058 0.112 0.055 0.038
EU 0.227*** 0.164** 0.151** 0.171 0.227*** 0.164** 0.151** 0.171 0.227*** 0.163***

0.056 0.068 0.074 0.109 0.054 0.068 0.074 0.112 0.055 0.038
log(dist) -0.894*** -0.895*** -0.890*** -0.894*** -0.895*** -0.890***

0.064 0.064 0.067 0.064 0.064 0.069
contig. 0.212* 0.212* 0.212* 0.212* 0.212* 0.212

0.125 0.125 0.127 0.125 0.125 0.130
comlang. 0.423*** 0.421*** 0.424*** 0.423*** 0.421*** 0.424***

0.105 0.105 0.107 0.105 0.105 0.109
locked EX 1.293***

0.054
locked IM 1.121***

0.054
Observations 11,550 11,550 11,550 11,550 11,550 11,550 11,550 11,550 11,550 11,550
A.R2 0.954 0.755 0.758 0.759 0.858 0.793 0.797 0.798 0.904 0.855

*** significant at 1%; ** significant at 5 %; * significant at 10%. The standard errors reported below the coefficient estimates for all models
are clustered on time-invariant country pairs. “LL” is the log-likelihood based on i.i.d. errors. “EZ” variable is the dummy for Eurozone
effect, taking one when both countries are in the Eurozone and zero when at least one country is not in the Eurozone. “EU” variable is
the dummy for European Union, taking one if country pairs are members of European Union (tracing back to European Coal and Steel
Community and Treaty of Rome).
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Table 3: Hypotheses testing: 1980-2004

Comb. H0 H1 Wald NW LR1 LR2 CV(Chi2) F-Test CV(F) DF
(1) NA Baseline 89171.9 21003.3 18307.4 1559.3 35.3 1.1 1469
(2) NAYear Baseline 85753.8 20809.9 18160.4 1534.5 35.2 1.1 1445
(3) YNA Baseline 72244 20282.7 18142.9 985.4 51.2 1.1 941
(4) YNAPair Baseline 20894.8 13898 12555.7 799.2 31.9 1.1 735
(5) IMEX Baseline 69295.7 19023.1 16598.7 1537.6 29.1 1.1 1448
(6) IMEXYear Baseline 65866.8 18793.1 16417.5 1512.9 28.9 1.1 1424
(7) YIMYEX Baseline 48478.1 17646 16185.5 464.6 87.2 1.1 416
(8) YIMYEXPair Baseline 7589.4 8837.9 8185.2 244.8 55.0 1.2 210
(9) PairYear Baseline 27390.9 14737.9 12993.6 1321.0 21 1.1 1238
(10) IMEX YIMYEX 1716.4 1377.1 1251.2 1107.8 1.3 1.1 1032
(11) IMEXyear YIMYEX 1104.9 1147.1 1043.4 1083.0 1.1 1.1 1008
(12) YNA YIMYEX 1412.1 2636.6 2453.4 579.4 5.1 1.1 525
(13) YNAPair YIMYEXPair 2914.1 5060.1 4663.4 579.4 10.7 1.1 525

The LR statistics (LR1 and LR2), log of likelihood ratio for the null and the alternative models are asymptotically
distributed as chi squared with the degrees of freedom (DF) as given assuming i.i.d. in the error terms. LR1 is
traditionally calculated, but the LR2 uses the method in Italianer (1985) to adjust the dimensions (see appendix
B.1). Assuming HAC in the error term, the chi square distributed Wald test statistics are shown in the column
“Wald NW”, using the Newey-West kernel for panel data with 2 lags. The “DF” column is the difference of
the dimensions in two models (the number of constraints imposed on the alternative models). The “CV(Chi2)”
and “CV(F)” columns show the critical value at the 5% significance level for Chi-square distribution and F
distribution respectively. All null hypotheses are rejected at the 5% significance level.
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Table 4: Actual size of the tests with homoscedasticity

Comb. H0 H1 DF LR1 LR2 Wald1 Wald2 F
(1) NA Baseline 1469 61.5 0 97.3 6.7 5.7
(2) NAYear Baseline 1445 62.7 0 97.5 7.1 5.6
(3) YNA Baseline 941 66 1.9 90.1 5.4 4.3
(4) YNAPair Baseline 735 63.3 5.2 83.9 5.5 4.7
(5) IMEX Baseline 1448 62.1 0 97.6 6.9 5.5
(6) IMEXYear Baseline 1424 62.7 0 97.5 6.9 5.3
(7) YIMYEX Baseline 416 53.4 10.7 65 4.7 4.5
(8) YIMYEXPair Baseline 210 37.1 12.5 41.5 4.4 4.3
(9) PairYear Baseline 1238 65.7 0.2 95.5 6.2 5.1
(10) IMEX YIMYEX 1032 32.9 0.4 71.8 5.7 4.8
(11) IMEXyear YIMYEX 1008 33.5 0.6 71.2 6 5.3
(12) YNA YIMYEX 525 34 5.3 50.7 5.7 4.9
(13) YNAPair YIMYEXPair 525 47.6 7.3 62.5 5.7 4.9

See appendix B.1 for simulations of Wald1, Wald2, F, LR1 and LR2 tests with the
homoscedastic errors.
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Table 5: Size of the Wald test, H0: B̂m = B0, where m ∈ {n, a}
Comb. Null (n) Alternative (a) All Coefficients in Null βEU and βEZ only

DF n a n a
(1) NA Baseline 27 4.5 4 4.1 4.7
(2) NAYear Baseline 51 4.8 4.3 4.2 4.7
(3) YNA Baseline 555 4.7 6 5.3 4.7
(4) YNAPair Baseline 761 6 5.9 4.7 4.7
(5) IMEX Baseline 48 4.5 5.3 4.1 4.7
(6) IMEXYear Baseline 72 4.7 4.1 4.2 4.7
(7) YIMYEX Baseline 1080 5.7 6.2 5.3 4.7
(8) YIMYEXPair Baseline 1286 7.2 7.3 4.7 4.7
(9) PairYear Baseline 258 5 4.2 4.5 4.7
(10) IMEX YIMYEX 48 4.5 4.9 4.1 5.3
(11) IMEXyear YIMYEX 72 4.7 5 4.2 5.3
(12) YNA YIMYEX 555 4.7 6.2 5.3 5.3
(13) YNAPair YIMYEXPair 761 6 6.3 4.7 4.7

The simulations assume the homoscedastic errors with the Wald2 test. The subscripts n and
a represents the null and alternative models respectively. See appendix B.1 and appendix B.4
for more details.
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Table 6: Power of the Wald test on βEU and βEZ only estimated from

the null model: H0: B̂n = B0

Comb. Null (n) Alternative (a) Variance of restricted coefficients, σ2
∆

0 0.01 0.02 0.03 0.04 0.05
(1) NA Baseline 4.1 4.3 4.4 4.4 4.5 4.7
(2) NAYear Baseline 4.2 4.1 4.2 4.5 4.7 4.6
(3) YNA Baseline 5.3 5.2 5.2 5.6 6.1 6.1
(4) YNAPair Baseline 4.7 4.7 4.7 4.7 4.7 4.7
(5) IMEX Baseline 4.1 4.2 4.3 4.5 4.3 5.1
(6) IMEXYear Baseline 4.2 4.5 4.9 4.5 4.8 4.9
(7) YIMYEX Baseline 5.3 6.1 6.5 8 9.6 11.3
(8) YIMYEXPair Baseline 4.7 4.7 4.7 4.7 4.7 4.7
(9) PairYear Baseline 4.5 4.2 4.5 4.4 4.4 4.4
(10) IMEX YIMYEX 4.1 4.2 4 4.1 4.5 5
(11) IMEXyear YIMYEX 4.2 4.2 4.5 4.5 4.5 4.5
(12) YNA YIMYEX 5.3 5.3 5.3 5.3 5.3 5.3
(13) YNAPair YIMYEXPair 4.7 4.7 4.7 4.7 4.7 4.7

The simulations assume homoscedastic errors. The subscripts n and a represent
the null and alternative models, respectively. In theory, the larger σ2

∆ is (a higher
deviation from the null model), the more rejections on the null model. But this
prediction does not hold in the simulations because the power of the test is too
low. See appendix B.1 and appendix B.4 for more details.
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Table 7: Model selection by BLR test and three information criteria and estimates on EZ and EU effects

Models DF L̂L L̂L BLR DIC AIC BIC r̂2
˜̂
βEZ std(βEZ)

˜̂
βEU std(βEU )

Baseline 2053 4233 5193 — -6548 -6280 8819 0.919 -0.009 0.014 0.138** 0.012
NA 489 -6904 -6656 11137 14302 14291 17887 0.731 0.248** 0.016 0.145** 0.013
NAYear 513 -6517 -6259 10750 13548 13544 17317 0.733 0.185** 0.017 0.141** 0.013
YNA 1064 -5663 -5300 9896 12050 12728 20554 0.733 0.158** 0.040 0.131** 0.020
YNAPair 1272 -5633 -5143 9866 12243 12831 22186 0.820 0.010 0.039 0.211** 0.033
IMEX 510 -5922 -5665 10155 12358 12350 16101 0.765 0.221** 0.015 0.193** 0.013
IMEXYear 534 -5438 -5169 9671 11414 11406 15333 0.764 0.137** 0.014 0.203** 0.013
YIMYEX 1635 -3435 -2733 7668 8274 8736 20761 0.776 0.114** 0.019 0.180** 0.015
YIMYEXPair 1843 1572 2383 2661 -1523 -1079 12475 0.861 0.005 0.015 0.141** 0.014
PairYear 722 -2845 -2562 7078 6255 6567 11877 0.791 0.092** 0.012 0.198** 0.012

This table presents results on model selection using the Bayesian method, as well as the posterior means of EZ and EU
effects on trade and their standard deviation (SE). The alternative model in the BLR test is the Baseline model. Burn-in
time: 100,000; thin: 10; simulation: 50,000. ** significant at 1%.
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Appendices

A Gravity Models and Data

Two main choices for dependent variable have been considered by researchers in
estimating the gravity equation: trade levels and ratios. The level dependent variable
can be the log of bilateral (unidirectional) imports/exports, or the average/sum of
imports and exports between countries, whereas the latter one suffers from the silver
medal error proposed by Baldwin and Taglioni (2007). These trade flow data can be
measured by current dollar or deflated by price index (US CPI). However, estimations
with deflated trade values suffer from the bronze medal error shown in Baldwin and
Taglioni (2007). The model with log of bilateral import levels is shown as below,

limik
t = cons+ lyy + βEZEZ + βEUEU + δik + θit + φkt +

J∑
j=1

γjtg
ik
jt + εikt . (10)

The dependent variable, limik
t , is the log of bilateral import levels, log(IM ik

t ), which is
determined by heterogeneous preferences (δik ≡ log(αik)) , the product of importers’
expenditures and exporters’ outputs (lyy ≡ log(EXP i

t ∗OUT kt )), trade costs (gikjt ≡
log(τ ikt )) and fixed effects. The trade costs gikjt include log of distance, dummies for
border, common language, land-lock, Eurozone and European Union. With symmetric
conditions, τ ikt = τ kit and αi (k) = αk (i), trade balance for each country is zero and total
output is equal to total expenditure, EXP i

t = OUT it , so that lyy = log(OUT it ∗OUT kt )
if replacing expenditure EXP i

t using output OUT it .
This type of estimation has a potential endogeneity problem because the economic

mass data “lyy” are included in the explanatory variables. Therefore, researchers use
the second choice: the log of the bilateral import ratio— imports divided by the product
of the importer’s expenditure and exporter’s output as in Anderson and Van Wincoop
(2003) with cross-section data. This estimation restricts the unit effect of economic
mass variables on bilateral trade. The model using bilateral import ratios in Anderson
and Van Wincoop (2003) and Aviat and Coeurdacier (2007) is given below,

limrikt = cons+ βEZEZ + βEUEU + δik + θit + φkt +
J∑
j=1

γjtg
ik
jt + εikt , (11)

where the dependent variable is defined as

limrikt = log(
IM ik

t

OUT it ∗OUT kt
) or log(

IM ik
t

EXP i
t ∗OUT kt

).

The version of bilateral import ratios may be non-stationary with long panel data.
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Hence, as in section 3 of Guo (2015), this paper uses the import ratios in equation (4)
of section 2.1

limrikt = log(
IM ik

t ∗WOUTt
OUT it ∗OUT kt

).

The data contain 22 OECD countries. There are fourteen countries in EU by 1995—
AUT, BEL-LUX, DEU, DNK, ESP, FIN, FRA, GBR, GRC, IRL, ITA, NLD, PRT, and
SWE, among which four countries did not join in the EZ in 2000—DNK, GBR, GRC,
and SWE. Another eight countries—AUS, CAN, CHE, JPN, USA, ISL, NOR, and
NZL— do not belong to EU. The data source is listed as below,

1) Current dollar value of bilateral import/export data: IMF DOTS.

2) Current dollar value of GDP: WDI and IMF DOTS (robustness check).

3) Current dollar value of private consumption expenditure: World Bank’s World
Development Indicators (WDI).

4) Bilateral trade costs variables: distance, dummies for border connection, land-
lock, and common language are taken from CEPII. Geodesic (great circle) dis-
tances are measured as kilometers between capital cities.42

5) EU and EZ dummies: constructed by author following the dates of countries’
participation in the European Union and Eurozone respectively.

Compared with the above LS results, Table B.1 provides results estimated by MLE,
assuming i.i.d. normally distributed country pair random effects. The MLE results
provide a robustness check on the variation of EZ and EU effects due to different choices
of fixed effects. On average, the MLE results show the EZ effect on increasing the import
ratio is 7.9%, compared with 25.4% using the LS in Table 2. The magnitude of the
EZ effect depends on the choice of time-varying or time-invariant country fixed effects.
Estimations with time-varying fixed effects in columns of “Baseline”, “YIMYEXPair”,
“YIMYEX”, “YNAPair”, and “YNA”, do not provide evidence to support a significant
EZ effect, but show a significant effect for EU membership (15% more). The model with
year and pair dummies (“PairYear”) used by Micco et al. (2003) show a 12% increase
in import ratio due to the currency union. In contrast, models with time-invariant
country fixed effects in columns of “NA”, “NAYear”, “IMEX” and “IMEXYear”, shows
that both EZ and EU variables significantly affect imports, around 21% and 25 % more
respectively. If we use the simple difference-in-difference method (DID) and take year
1999 as the breaking point, estimations with time-invariant country fixed effects show
that using euros can increase 24% import ratios. After controlling for the time-varying
country fixed effect, however, the EZ effect from DID drops to 9%.

42http://www.cepii.franglaisgraph /bdd/distances.htm
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B Monte Carlo Simulations

B.1 Type I Error under Homoscedastic Errors

All models with different groups of dummy variables are nested in the baseline
model. We use the baseline model (the alternative) and the model “IMEX” (the null)
as an example to illustrate the Monte Carlo simulations for size distortion presented in
table 4

wikt = cons+ βEZEZ + βEUEU + δik + (θ̃it + θ̃i) + (φ̃kt + φ̃k) +
3∑
j=1

γjtg
ik
j + εikt ,

where θit = θ̃it + θ̃i and φkt = φ̃kt + φ̃k. In order to obtain the model “IMEX”, we need

to impose the following 1448 restrictions on the baseline model: δik = 0, θ̃it = 0, and

φ̃kt = 0. All simulations are performed 1000 times.

1) Obtain the coefficients B0 (θ̃i, φ̃k, βEZ , βEU , γjt and the constant intercept)
and variance σ2

0 (=var(ε0)) based on the model y = XB0 + ε0. We estimate the
coefficients from the model “IMEX” using the real data shown in appendix A.

The dependent variable is import ratio log
(

(1+IM ik
t )∗WOUTt

EXP it ∗OUTkt

)
. The coefficients on

trade costs γjt are listed in table 2. The variance is the mean of the squared
residual.

2) Simulate the dependent variables ŷ for 1000 times given B0, σ2
0, and the co-

variates X from the model “IMEX”. The random sample comes from the random
draws of the error term.

3) Fit the simulated ŷ using both the null and alternative models ( y = XBm +
εj and m ∈ {n, a}, the subscript“n” and “a” is represented the the null and

alternative models respectively. ) and obtain the estimated coefficients (B̂n and

B̂a) and variance (σ̂2
n and σ̂2

a) for 1000 times assuming i.i.d.

4) Calculate the statistics for the LR test and rejection rate (size). We use the
formula

LR1 = N ∗
[
log(σ̂2

n)− log(σ̂2
a)
]

to calculate the statistic for the LR test,“LR1”, where σ̂2
j = RSSj/N and RSSj

is the residual sum of squares of model m. Following Italianer (1985), the “LR2”
adjusts the dimensions of the models (footnote 22); that is

LR2 = LR1 ∗ (N − r −Kn/2) = LR1 ∗ (11550− 1448− 0.5 ∗ 48)/11550.

The statistic is chi-squared distributed with 1448 degrees of freedom and the
critical value at 5% significant level is 1537.639. The size is the percentage of
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rejecting the null model “IMEX” with 1000 simulations when the null model
“IMEX” is true.

5) The power curve. The difference between model “IMEX” and the baseline

model includes the σθ̃ and σφ̃, and σδ. For example, θ̃it = θit − θ̃i with zero mean

and var
(
θ̃it

)
= σ2

θ̃
. The standard deviation σθ̃ is equal to zero in model “IMEX”;

so do σφ̃ and σδ. By increasing the σ2
θ̃
, σ2

φ̃
, and σ2

δ by the same scale, i.e. 0.01,

the rejection rate of the null model “IMEX” goes up. The power curve plots the
rejection rate along with the increasing variance.

6) Calculate the statistic for the F test. The F test can be used to compare
models with homoscedastic error terms. In table 4 the F test statistic for null
and alternative models is calculated as

F =
(RSSn −RSSa)/(Ka −Kn)

RSSa/(N −Ka)
,

where RSS is the residual sum of squares and K is the number of estimated
coefficients. The F statistic has the degrees of freedom (Ka −Kn = 1496− 48 =
1448 and N−Ka = 11550−1496 = 10054) and the critical value for the significant
level 5% is 1.067.

7) Calculate the statistic for the Wald test. The constraint matrix Rn can be

constructed using the conditions δik = 0, θ̃it = 0, and φ̃kt = 0. The Wald statistic
is calculated as follows

Wald = (RnB̂a)
′ ∗ [Rnvar(B̂a)R

′
n]−1 ∗ (RnB̂a),

where var(B̂a) = σ̂2
a ∗ (X ′a ∗ Xa)

−1. We use the consistent and biased estimate

σ̂2
a = RSSa/N to calculate the Wald1 statistics, and use consistent and unbiased

estimate σ̂2
a = RSSa/(N−Ka) to calculate (dimension adjusted) Wald2 statistics.

The statistic is chi-squared distributed with degrees of freedom 1448 and the
critical value at 5% significant level is 1537.639. The size is the percentage to
reject the null model “IMEX” with 1000 simulations when the null model “IMEX”
is true.

Two figures provide direct evidence for the biased distributions of the hypothesis
tests due to the high dimensionality. We take the Comb. (1) as an example to illustrate
the mechanism. Figure B.1 provides the chi-square densities with DF 1469 for three
cases (appendix B.1): 1) the solid red line is the ideal theoretical kernel density, draw-
ing 1000 observations from the Chi-square distribution directly; 2) the dashed black
line plots the empirical LR kernel density (LR1) based on the null model “NA” and
the baseline model using 1000 simulations ; 3) the blue dash-dot line plots dimension
adjusted LR kernel density (LR2) based on Italianer (1985). The vertical red line is
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equal to 1559.3, the theoretical critical value (CV) at the 5% significant level. Similarly,
figure B.2 portrays the densities for the Wald tests.

With DF 1469, the empirical Chi-squared distribution for the LR and Wald tests
(the dash black lines) in Figure B.1 and Figure B.2 are biased compared to the ideal
theoretical distribution (the red solid line). These biased asymptotical chi-square dis-
tributions occur because of the high dimensions in these models and a large number
of constraints associated with the hypothesis tests. Using the conventional CV at the
5% significant level (1559.3), the empirical LR1 and Wald1 tests both have a large size
distortion. In Figure B.1, the dash black LR1 line has a 62.1 % rejection rate on the
null model “NA”. A small adjustment proposed by Italianer (1985) (the weight is equal
to 0.872 = 11550−1469−0.5∗27

11550
) shown in the dash-dot blue LR2 line reduces this large size

to zero. A value, such as 1560, is changed into 1360.32 with the adjustment (the weight
is equal to 0.872), which is no longer significant compared with the CV 1559.3. This
simple adjustment does not work well for the LR test. Similarly in Figure B.2 for the
Wald tests, the size is 97.6% for the Wald1 test, and decreases to 6.9% for the Wald2
test after the dimension adjustment (the weight is equal to 0.873 = 11550−1469

11550
).

B.2 Errors with Heteroskedasticity and Autocorrelations

In table 3, we calculate the Wald statistics using Newey-West standard errors with
2 lags, robust to the heteroskedasticity and autocorrelation (HAC). The Monte Carlo
simulations assume HAC error terms for a specific importer i and exporter k pair
(462 pairs) and specify three parametric forms for the HAC. The conclusions on three
hypothesis tests and size distortions (with misspecification or not) are robust to the
choices on HAC.

The first HAC, “HAC1”, in tables B.2-B.5 takes the form as below,

εikt = gik + νikt νikt = bνν
ik
t−1 + µikt var(gik) = σ2

gik var(µikt ) = σ2
µ

There is no contemporaneous correlation across country pairs. This parametric assump-
tion considers the role of fixed effect in the variance covariance matrix Ξ (= var(ε)).
The matrix Ξ (= var(ε)) is a block diagonal matrix with Ωik (462 pairs) for one specific
importer i and exporter k pair and Ωik has the following form,

Ωik = σ2
gik


1 1 · · · 1

1 1
...

...
...

... 1 1
1 · · · 1 1

+
σ2
µ

1− b2
ν


1 bν · · · bT−1

ν

bν 1
...

...
...

... 1 bν
bT−1
ν · · · bν 1

 .
The second HAC, “HAC2”, does not take the fixed affect into account and takes

the form,

εikt = bεikt−1 + υikt , and var(υikt ) = σ2
υik
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The variance Ξ is a block diagonal matrix with Ωik, where

Ωik =
σ2
υikt

1− b2


1 b · · · bT−1

b 1
...

...
...

... 1 b
bT−1 · · · b 1

 .
Considering both cases in HAC1 and HAC2 leads to the third HAC form, “HAC3”,

which takes the form,

εikt = gik + νikt νikt = bνν
ik
t−1 + µikt var(gik) = σ2

gik var(µikt ) = σ2
µik

The variance Ξ is a block diagonal matrix with Ωik, where

Ωik = σ2
gik


1 1 · · · 1

1 1
...

...
...

... 1 1
1 · · · 1 1

+
σ2
µik

1− b2
ν


1 bν · · · bT−1

ν

bν 1
...

...
...

... 1 bν
bT−1
ν · · · bν 1

 .
With HAC2, the size distortions are larger than those with HAC1 and conclusions

remain. With HAC3, the size distortions are close to either HAC1 or HAC2 depending
on the null hypothesis models. Simulations with only heteroskedastic errors without
serial correlation gives similar results too. The results with HAC1 only are reported in
the paper to save space.

The last HAC, “HAC4”, in tables B.2-B.5 is White-type heteroscedastic. The vari-
ance Ξ0 is diagonal matrix with (σik)2 (=εikt ) for a specific importer-exporter group.
Zeros are for all non-diagonal elements. This is assumed in the Bayesian model speci-
fication.

B.3 Monte Carlo Simulations for the Misspecified Case

Since the data show HAC, we consider four HAC forms in the paper (appendix
B.2). The first three HACs obtain qualitatively similar results and we mainly focus on
“HAC1”. The HAC1 takes the form as below,

εikt = gik + νikt νikt = bνν
ik
t−1 + µikt var(gik) = σ2

gik var(µikt ) = σ2
µ

There is no contemporaneous correlation across county pairs.43 This parametric as-
sumption considers the heterogeneous fixed effect in the variance covariance matrix
Ξ (= var(ε)), which is a block diagonal matrix with Ωik (462 pairs) for one specific
country pair (importer i and exporter k) and Ωik has the following form,

43Models with contemporaneous correlation across county pairs can be estimated by spacial regres-
sion.
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Ωik = σ2
gik


1 1 · · · 1

1 1
...

...
...

... 1 1
1 · · · 1 1

+
σ2
µ

1− b2
ν


1 bν · · · bT−1

ν

bν 1
...

...
...

... 1 bν
bT−1
ν · · · bν 1

 .
The HAC4 is White-type heteroscedastic. The variance Ξ0 is diagonal matrix with
(σik)2 (=εikt ) for a specific importer-exporter group. Zeros are for all non-diagonal
elements. This is assumed in the Bayesian model specification.

In simulations, we consider the case of misspecifications on the error structure, which
the true errors have HAC but the estimations do not control for HAC (assuming spher-
ical errors), noted as HAC(M). In table B.2, compared with the case of “HOMO”, the
case of misspecification HAC1(M) has overwhelmingly higher rejection rates for both
the null and alternative models; most of the values are 100%. Because of the misspec-
ification, both the null and alternative models cannot estimate consistent coefficients
and are rejected easily by the Wald test. Surprisingly, some of the rejection rates are
very small, and several are even less than 5% for the case of misspecification HAC4(M).
Particularly, for the last five combinations the rates in rejecting the true null model
are higher than those in rejecting the alternative model though on average the former
one is smaller than the later one. In sum, the country-pair specific variance structure
remarkably influences the estimations of the coefficients. Without controlling for the
true HAC, both the null and alternative models cannot obtain consistent coefficients
except few specifications in HAC4(M).

We continue to use the combination of the null model “IMEX” and the alterna-
tive baseline model as an example to illustrate the Monte Carlo simulations on the
misspecified case (HAC1(M)) in tables B.2-B.5. The misspecification refers (no con-
trolling for HAC) to the fact that the simulated data have HAC in the error term, but
the regressions ignore the HAC and assume homoscedastic error terms to estimate the
variance-covariance matrix of the coefficients.

1) Obtain the coefficientsB0 and variance Ξ0 (= var(ε0)) based on (y = XB0 + ε0).
The (estimated) variance covariance matrix Ωik has the form either HAC1 or
HAC2 or HAC3 in appendix B.2.

2) Simulate the dependent variables ŷ for 1000 times given B0, Ξ0, and covariates
in the null model “IMEX”. The random sample comes from the random draws of
the error term.

3) Fit the simulated data into models, same as in the appendix B.1 assuming
homoscedasticity.

4) Calculate the statistics for three tests, including “LR1” and “LR2” for the LR
test, “F” for the F test and “Wald1” and “Wald2” for the Wald test. Then obtain
the rejection rates (size) for each test, which follows the appendix B.1 assuming
homoscedasticity.
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B.4 Monte Carlo Simulations for the Wald Test on B0

Tables 5, B.4, B.3 and B.5 show the Wald hypothesis tests (Wald2) on the estimated
coefficients from both the null (n) and alternative (a) with respect to the artificial B0.
The “HAC1(M)” refers to the misspecification case discussed in appendix B.3 without
controlling for the HAC1. Particularly, tables B.3 and B.5 provide details for EZ and
EU effects, a subset of the B0. We continue using the same example to illustrate the
simulation.

1) Obtain the coefficients B0 and variance, either homoscedasticity σ2
0 or het-

eroskedasticity Ξ0 based on (y = XB0 + ε0) as in append B.1 and B.3.

2) Simulate the dependent variables ŷ for 1000 times given B0,σ2
0 or Ξ0, and

covariates in the null model (n). The random sample comes from the random
draws of the error term.

3) Fit the simulated data into models, same as in the appendix B.1 if with ho-
moscedasticity. With HAC, we transform the ŷ by multiply the cholesky decom-
position of the variance matrix Ξ0, which has no misspecification. The case with
HAC and misspecification is the fact that the simulated data have HAC in the
error term, but the regressions assume homoscedastic error terms.

4) Calculate the statistic for the Wald test in table 5 for both null and alternative
models. The null hypothesis in the Wald test is H0 : B̂m = B0 for m ∈ {a, n},
and Wald statistic (Wald2) is calculated by following formula

Wald = (B̂m −B0) ∗
[

̂var(B̂m)

]−1

∗ (B̂m −B0),

where ̂var(B̂m) = σ̂2
m ∗ (X ′mXm)−1 and σ̂2

m = RSSm/(N −Km). Then obtain the
rejection rates (size) for the test under different assumptions of the error terms.

5) Obtain the rejection rates (size) in table B.3 for both null and alternative
models based on the choice of the subset of the coefficients B0.

6) Calculate the Wald statistics in table B.4. The null hypothesis is H0 :
¯̂
Bm = B0

for m ∈ {a, c}, the statistic is calculated as

Wald = (
¯̂
Bm −B0) ∗

[
̂

var(
¯̂
Bm)

]−1

∗ (
¯̂
Bm −B0),

where the variance covariance matrix is

̂
var(

¯̂
Bm) =

¯̂
σ2
m ∗ (X ′mXm)−1/1000.
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with mean of the estimated variance
¯̂
σ2
m = RSSm/(N−Km) and mean of the sum

of squared residual RSSm. The Wald statistic follows chi-squared distribution
given degrees of freedom K = 48 and the critical value for the significant level 5%
are 65.17.

B.5 Steps of MCMC via Gibbs

Markov Chain Monte Carlo Simulation via Gibbs Sampler has the following five
steps:

Step 1. Give initial values for the variances, Σ1,2 ((σik)2, σ2
p, σ

2
θt, σ

2
φt), and the

second level parameters B2 (p, θi, φk);

Step 2. (update the first level parameters) Draw values from the posterior distri-
butions for the first level parameters B1 (cons, βEZ , βEU , θit, φ

k
t , and δik), given

Σ1,2 and B2;

Step 3. (update all the variance) Draw values from the posterior distributions for
the variances Σ1,2 ((σik)2, σ2

p, σ
2
θt, and σ2

φt), given B1 in Step 2 and B2 in Step 1.

Step 4. (update the second level parameters) Draw values from the posterior
distributions for the parameters B2, given B1 in Step 2 and Σ1,2 in Step 3.

Step 5. Repeat from the second step until the chain converges.
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Figure B.1: Theoretical and empirical Chi-squared distributions with DF 1469
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Figure B.2: Kernel densities for Wald1 and Wald2: NA vs Baseline
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Table B.1: Eurozone effect and European Union effect on the log of bilateral import ratio by MLE: 1980-2004
Var. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Dummies Baseline NA NAYear YNA YNAPair IMEX IMEXYear YIMYEX YIMYEXPair PairYear
Time-varying Yes No No Yes Yes No No Yes Yes No
Imp. & Exp. Yes No No No No Yes Yes Yes Yes No
Nation No Yes Yes Yes Yes No No No No No
Year No No No Yes No No Yes No No Yes
Pair Asym. No No No Sym. No No No sym. Sym.
EZ -0.004 0.158*** 0.141*** 0.001 -0.004 0.158*** 0.142*** 0.002 -0.004 0.139***

0.023 0.016 0.017 0.025 0.025 0.016 0.017 0.023 0.023 0.017
EU 0.227*** 0.191*** 0.163*** 0.227*** 0.227*** 0.191*** 0.163*** 0.226*** 0.227*** 0.163***

0.018 0.014 0.014 0.020 0.020 0.014 0.014 0.018 0.018 0.015
log(dist) -0.892*** -0.897*** -0.890*** -0.892*** -0.897*** -0.890***

0.052 0.052 0.053 0.047 0.047 0.047
contig. 0.211* 0.212* 0.210* 0.211* 0.212* 0.210*

0.122 0.122 0.123 0.109 0.109 0.109
comlang. 0.426*** 0.422*** 0.430*** 0.426*** 0.422*** 0.430***

0.104 0.104 0.104 0.092 0.092 0.092
locked EX -1.236***

0.372
locked IM -1.409***

0.372
Obs 11,550 11,550 11,550 11,550 11,550 11,550 11,550 11,550 11,550 11,550
R2-p 0.968 0.115 0.188 0.409 0.445 0.126 0.199 0.629 0.682 0.224
sigma u 0.002 0.542 0.543 0.545 0.367 0.481 0.481 0.484 0.268 0.364
sigma e 0.255 0.328 0.317 0.286 0.286 0.328 0.317 0.260 0.260 0.317
rho 0.008 0.733 0.746 0.784 0.621 0.683 0.697 0.776 0.515 0.569

See table note in Table 2. MLE assumes the random effects, i.e. εikt = uik + eikt , var(uik) = σ2
u and var(eikt ) = σ2

e .

50



Table B.2: Size of the Wald test (Wald2), H0: B̂m = B0, where m ∈ {n, a}
Comb. Null (n) Alternative (a) DF n a

HOMO HAC1(M) HAC4(M) HOMO HAC1(M) HAC4(M)
(1) NA Baseline 27 4.5 100 5.1 4 100 21.4
(2) NAYear Baseline 51 4.8 100 3.7 4.3 100 4.4
(3) YNA Baseline 555 4.7 48.7 8 6 100 11.3
(4) YNAPair Baseline 761 6 100 14.9 5.9 100 17.3
(5) IMEX Baseline 48 4.5 100 6.9 5.3 100 29.8
(6) IMEXYear Baseline 72 4.7 100 7.3 4.1 100 13.2
(7) YIMYEX Baseline 1080 5.7 45.3 10.4 6.2 100 22.1
(8) YIMYEXPair Baseline 1286 7.2 100 15.7 7.3 100 24.1
(9) PairYear Baseline 258 5 100 14.7 4.2 100 7.1
(10) IMEX YIMYEX 48 4.5 100 6.9 4.9 89.4 7.7
(11) IMEXyear YIMYEX 72 4.7 100 7.3 5 77.9 2.7
(12) YNA YIMYEX 555 4.7 48.7 8 6.2 44.7 6.2
(13) YNAPair YIMYEXPair 761 6 100 14.9 6.3 100 9.1

Appendix B.4 provides the calculations on the size distortions. The subscripts n and a represents the null and alternative
models respectively. See appendix B.1 for the Monte Carlo simulations for the homoscedasticity case (the “HOMO” columns);
see appendix B.2 and appendix B.3 for “HAC1(M)” and “HAC4(M)” columns.
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Table B.3: Actual size of the Wald test (Wald2), H0:
¯̂
βmEZ = β0

EZ and
¯̂
βmEU = β0

EU , where
m ∈ {n, a}
Comb. Null (n) Alternative (a) n a

HOMO HAC1(M) HAC4(M) HOMO HAC1(M) HAC4(M)
(1) NA Baseline 4.1 58.2 1.9 4.7 48.6 2.6
(2) NAYear Baseline 4.2 60 2.5 4.7 49.3 2.7
(3) YNA Baseline 5.3 74.2 4.9 4.7 48.6 2.7
(4) YNAPair Baseline 4.7 13.5 3.2 4.7 46.9 3.2
(5) IMEX Baseline 4.1 58.8 1.8 4.7 48 3.3
(6) IMEXYear Baseline 4.2 62.6 2.7 4.7 48.9 3.1
(7) YIMYEX Baseline 5.3 73.2 6.1 4.7 47.4 3
(8) YIMYEXPair Baseline 4.7 19.2 3.3 4.7 44.8 3.3
(9) PairYear Baseline 4.5 19.2 1.5 4.7 48.2 3.3
(10) IMEX YIMYEX 4.1 58.8 1.8 5.3 73.6 5.9
(11) IMEXyear YIMYEX 4.2 62.6 2.7 5.3 74.1 5.7
(12) YNA YIMYEX 5.3 74.2 4.9 5.3 74.1 4.8
(13) YNAPair YIMYEXPair 4.7 13.5 3.2 4.7 14.5 3.2

This table focuses on the EZ and EU coefficients particularly. See table notes in table B.2.
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Table B.4: Wald statistics (Wald2), H0:
¯̂
Bm = B0, where m ∈ {n, a}

Comb. Null (n) Alternative (a) DF CV(Chi2) n a
HOMO HAC1(M) HAC4(M) HOMO HAC1(M) HAC4(M)

(1) NA Baseline 27 40.1 25.5 280.8 18.1 17.9 2356.4 14.4
(2) NAYear Baseline 51 68.7 55.9 290.7 51.6 35.7 2671.8 25.1
(3) YNA Baseline 555 610.9 507.6 377.7 513.3 518.1 5349.2 503.3
(4) YNAPair Baseline 761 826.3 706.4 7412.1 691.7 744.5 22973.4 730.4
(5) IMEX Baseline 48 65.2 43.1 618.6 41.7 54.1 2626.1 43.7
(6) IMEXYear Baseline 72 92.8 73.6 637.2 74.2 74.5 2682.9 58.3
(7) YIMYEX Baseline 1080 1157.6 1016.4 800.9 1021.3 1017 9141.7 1011.4
(8) YIMYEXPair Baseline 1286 1370.5 1215.2 7054.1 1182.2 1244.1 18610.6 1239
(9) PairYear Baseline 258 296.5 256.8 7093.3 221.4 268.3 14530.8 270.8
(10) IMEX YIMYEX 48 65.2 43.1 618.6 41.7 51.7 38.1 75.3
(11) IMEXyear YIMYEX 72 92.8 73.6 637.2 74.2 69.9 45.1 89.4
(12) YNA YIMYEX 555 610.9 507.6 377.7 513.3 516.1 465.4 499
(13) YNAPair YIMYEXPair 761 826.3 706.4 7412.1 691.7 714.9 7631.6 675.8

This table focuses on the mean of the estimated coefficients. See table notes in table B.2.
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Table B.5: Wald statistics (Wald2), H0:
¯̂
βmEZ = β0

EZ and
¯̂
βmEU = β0

EU , where m ∈ {n, a}
Comb. Null (n) Alternative (a) CV(chi2) n a

HOMO HAC1(M) HAC4(M) HOMO HAC1(M) HAC4(M)
(1) NA Baseline 6.0 5.7 4.0 2.2 1.1 7.4 0.2
(2) NAYear Baseline 6.0 5.0 6.4 1.1 1.1 8.1 0.2
(3) YNA Baseline 6.0 7.8 13.9 3.1 1.1 7.1 0.2
(4) YNAPair Baseline 6.0 1.1 3.0 1.0 1.1 8.3 1.0
(5) IMEX Baseline 6.0 5.7 2.2 4.0 1.1 6.9 0.2
(6) IMEXYear Baseline 6.0 5.0 4.0 2.5 1.1 7.3 0.1
(7) YIMYEX Baseline 6.0 7.8 11.6 4.8 1.1 8.2 0.1
(8) YIMYEXPair Baseline 6.0 1.1 2.8 1.1 1.1 6.1 1.1
(9) PairYear Baseline 6.0 0.4 1.0 1.1 1.1 9.1 0.7
(10) IMEX YIMYEX 6.0 5.7 2.2 4.0 7.8 4.8 4.7
(11) IMEXyear YIMYEX 6.0 5.0 4.0 2.5 7.8 5.9 4.7
(12) YNA YIMYEX 6.0 7.8 13.9 3.1 7.8 13.9 3.1
(13) YNAPair YIMYEXPair 6.0 1.1 3.0 1.0 1.1 3.1 1.0

This table focuses on the mean of the estimated EZ and EU coefficients, βEZ and βEU , particularly. See table notes
in table B.2.
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Table B.6: Posterior means and standard deviations of B2

Var. mean std Var. mean std
p 1.669 0.098 σ2

p 2.292 0.175
θi AUS 1.110 0.052 φk AUS 0.400 0.069

AUT -1.172 0.074 AUT -0.123 0.071
BEL 0.968 0.055 BEL 0.324 0.049
CAN 0.679 0.060 CAN 0.190 0.049
CHE -0.560 0.046 CHE 0.640 0.051
DEU -0.049 0.043 DEU 0.309 0.048
DNK -0.151 0.091 DNK 0.277 0.056
ESP -0.092 0.061 ESP -0.877 0.067
FIN 0.375 0.146 FIN 0.840 0.064
FRA 0.040 0.062 FRA -0.262 0.055
GBR 0.908 0.049 GBR 0.848 0.056
GRC -0.770 0.141 GRC -0.926 0.092
IRL -0.279 0.143 IRL 1.383 0.070
ISL 2.080 0.105 ISL -1.348 0.152
ITA 0.374 0.037 ITA 0.103 0.053
JPN 1.710 0.042 JPN 0.682 0.062
NLD 0.688 0.065 NLD 0.301 0.061
NOR 0.073 0.079 NOR -0.341 0.094
NZL 0.332 0.428 NZL 0.299 0.414
PRT -0.071 0.120 PRT -0.543 0.067
SWE -0.099 0.065 SWE 1.051 0.055
USA omitted omitted USA 0.218 0.047
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